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1. INTRODUCTION

Gaussian time series have the property that their higher order spectra are identically
zero. In many signal processing applications, the noise fields are predominantly Gaussian.
Thus if the signal has a nonzero higher order spectra (i.e., the signal is non-Gaussian),

then higher order spectral processing of the combined signal plus noise field may provide
processing gains over moje traditional processing methods that rely on lower order

properties of the signal.

However, any practical signal processing applications of higher order spectra rely

on cstimates of the higher order spectra made from a finite number of data samples, and
thus the statistical properties of various estimators of the higher order spectra determine the
processing gains that may be achieved in practice for specific signals and noise. Therefore,

to determine the utility of higher order spectral processing it is necessary to determine

estimators that are appropriate for specific signal processing applications and determine the
performance of those estimators for the signal and noise characteristics of the specific
application based on the derived statistical properties of the estimators. This report

summarizes the work performed under Contract N00014-87-K-0785 in which statistical
estimators for the detection and time delay estimation of non-Gaussian signals were defined

and their statistical properties in the presence of noise were derived. ,/

This research is being conducted in coordination with other related 6.2 and 6.3
research projects, which serve to identify specific applications of interest to the Navy and

serve as a means of transitioning this work to Navy systems. Results from this work are

being applied to classified data analysis under these other programs. The results of the
work conducted under this project are published in Hinich and Wilson (1989, 1990).

In this report, a detection statistic is defined based on a sample estimate of the
bispectrum. It is shown that under the null hypothesis of noise only, the detection statistic
is approximately central chi-square distributed and under the alternative hypothesis of

signal-plus-noise it is noncentral chi-square distributed. The noncentrality parameter of the

noncentral chi-square distribution is derived in terms of the processing parameters of the

bispectrum estimate, the degree of non-Gaussianity of the signal (the skewness function)
and the signal-to-noise ratio. Since the mean value of the detection statistic is equal to the
noncentrality parameter, the performance of the detection statistic as a function of all
relevant signal, noise, and processing parameters is clearly demonstrated. A new
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bispectrum waterfall function is defined for use in displaying the detection results in a

familiar lofargram type of display.

The cross-bispectrum is also exploited to define time delay estimators. An

estimator based on the phase of the cross-bispectrum is defined and its statistical properties

are derived. The dependence of the resolution of the time delay estimator on processing

parameters, the signal skewness, the signal-to-noise ratio (S/N), and the coherency of the

noise is explicitly derived. A new time delay estimator is also defined which casts the two-

dimensional bispectrum into a one-dimensional framework much like the bispectrum

waterfall used in detection, and allows it to have many of the properties of a cross-

correlation function.

The results of this study can be used by a system designer to determine the

feasibility of higher order spectral processing for specific signal processing applications.
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2. BISPECTRUM ANALYSIS

2.1 THEORY OF BISPECTRUM PROCESSING

2.1.1 Comparison to the Power Spectrum

While power spectral analysis of a time series is a concept that is familiar to many,

bispectral analysis may not be as familiar. A family of spectra, called polyspectra, has been

defined for a stationary time series, of which the power spectrum is only the lowest order

member of the family (Brillinger, 1965; Rosenblatt, 1966; Brillinger and Rosenblatt,

1967a,b). The next higher order member of this family is the bispectrum. In the following

paragraphs, the power spectrum and bispectrum will be compared and contrasted by

explaining their relationships to the Fourier transform of the time series and the correlation

(or cumulant) functions of the time series.

For a stationary discrete time series, its power spectrum is given in terms of the
Fourier transform of the time series by

P(o) = ((O)X(c))=(Ix(co)12) , (2.1)

where X(wo) is the Fourier transform of the time series X(t),

* X(c ) = 2 1 X(ti) e-i t , - i < (2.2)

<.> denotes the expected value, and * denotes complex conjugate. As can be seen from

Eq. (2.1), the power spectrum contains information only about the magnitude of the

Fourier transform of a time series.

However, the bispectrum and higher order polyspectra contain information about

both the magnitude and specific phase relationships (or coherences) between multiple

frequency components of the Fourier transform of a time series. Different polyspectra

describe different phase relationships. For this reason, the bispectrum (and higher order

polyspectra) contain additional information about a time series that cannot be obtained from

3



the power spectrum. For a stationary time series, the bispectrum is given in terms of its

Fourier transform by

B(wOl,ci2)= (X(wo1)X(CO2) X.(l+o2)) . (2.3)

The bispectrum is a two-dimensional function of frequency. The bispectrum is in general a

complex function rather than a real function like the power spectrum. The two-dimensional

complex bispectrum provides information about phase relationships between the signal

components at frequencies .01 ,2, and W1 +02.

The previous paragraphs have explained mathematically what the bispectrum is but

have shed little light on what the bispectrum means and how it can be interpreted.

Equation (2.3) represents the bispectrum as the expected value of the product of Fourier

transform values at the three frequencies C01, W2 , and 01 +02. Thus a nonzero bispectrum

occurs only when these three frequency components are statistically dependent. For any

Gaussian time series, all frequency components are independent, so a Gaussian time series

will produce a zero bispectrum. However, if the time series contains a quadratic

nonlinearity such that two frequency components interact to produce a sum or difference

frequency, then the three frequencies will be statistically dependent. In this case a nonzero

value will occur in the bispectrum at the pair of frequencies that define the nonlinear

interaction. Thus the bispectrum will indicate the presence of (quadratic) nonlinearities in

the time series and identify the frequencies contributing to the nonlinear behavior. This is

the basis for the statistical tests for Gaussianity and linearity using the bispectrum described

by Hinich (1982) and others. The three frequency components may also be statistically

dependent, not from a nonlinear interaction but from linear mechanisms which result in

harmonics of some fundamental frequency. In this case the time series can be thought of as

a periodically time varying (i.e., nonstationary) process. The bispectrum can indicate the

presence of these nonstationarities due to their statistical dependence of distinct frequency

components. Thus harmonically related signals can be identified in the bispectrum. Also,

if a time series is linearly time varying (e.g., transient), it will have frequency components

that are statistically dependent. Therefore, transient signals will produce a nonzero

bispectrum. In this brief discussion we have identified that quadratic nonlinear signals,

harmonically related signals, and transients can result in nonzero bispectral signatures.

i
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2.1.2 Formal Definition and Properties

Higher order spectra of a random process are often referred to as cumulant spectra.

The nth order cumulant function of a random process X(t) is defined in terms of the

characteristic function of the random process by

[X(t), X(t+1), X(t+ln-1)]n = (1) n 8nln(D(al. an) a = .-anO (2.4)
8.1... 6an

where the characteristic function is defined as

D(ai . ... , an) = (exp{i(aX(t) + a2X(t+tl) + ... + anX(t+tn 1))}) (2.5)

The square brackets [] denote the cumulant function. One property of the characteristic

function is that if any subset of the X(ti) are independent of the rest of the X(ti), then the

characteristic function factors. For cxample, if X(t), . . . , X(t+tr-l) are independent of

X(t+Tr), .... X(t+Tn. 1), then the characteristic function is

,D(al, .. ... an) = (D(al, .... , ar)(D(ar+l,. , an) (2.6)

If the characteristic function factors, then the nth partial derivative of the characteristic

function given in Eq. (2.4) is zero and the cumulant function is thus zero. This

demonstrates an important property of the cumulant function: the nth order cumulant

function is nonzero only when there is statistical dependence between the n elements of the

cumulant function.

* If the random process X(t) is stationary, then there exists a process Z(co) with

orthogonal increments such that

X(t) = f etcdZ(o) (2.7)

The nth order cumulant of X(t) can then be written as
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[X(t), X (t+t ) ..... X(t+Tn -l)]n =

j f e ei( + (+o) E)i(w't + n 1l") [dZ((on)] n (2.8)

The nth order cumulant of X(t) is nonzero only when the nth order cumulant of the
orthogonal increments dZ(co) is nonzero. However, because the increments are S
orthogonal, their cumulant is nonzero only if all of the n frequencies are not distinct.
Furthernore, because X(t) is stationary, its nth order cumulant is independent of t, which is

true in general only for the case co, + + (On = 0 due to the presence of the exponential

. +(),)t in the integral. This case satisfies the requirement that the n frequencies not be 0
all distinct. Thus the nth order cumulant of X(t) is

IX(t), X(t+r I. X(t+tn.)]n =

e (-Tn-1) [dZ(oj) dZ(o)] (2.9)

for cW + • • + Won = 0, and zero otherwise.

If we now define a function Pn(o 1 , ... on-) such that

dPn(CO1, ... Cn-) = [dZ(co1 ), . . . , dZ(%on- 1), dZ(-(o1 "'" -con-)ln (2.10)

then if Pn is continuous it can be written as

dPn(Co 1 I ... n,( 1) = pn(o 1 .... I con.1  do 1  ...don.1  (2.11)

and Eq. (2.9) can be written as

IX(t), X(t+ 1. X(t+n.l)dn

f f E• • ( 1)- -1 Pn(Wol ''' (0n-1 ) dco1 I ' d( n-1

3n.1 p1 n(Wo1  I on-) (2.12)

Thus the nth order cumulant of X(t) is the inverse Fourier transfonm of the function Pn.

This function is referred to as the nth order (cumulant) spectral density function of X(t). If
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the cumulant function is integrable, then the nth order spectral density function can be

written as the Fourier transform of the cumulant function:

Pn(0)l .... 0)Wn-) =  !3n-1 {IX(t), .. ... X(t+tn-l)] n } (2.13)

Brillinger (1975) has shown that if X(0)) is the finite Fourier transform of X(t),

N-1

X()) = I X(t)ei (2.14)
t=O

then the cumulant of the Fourier transforms is equal to the nth order spectral d,.Isity

function plus lower order terms:

(X(o)1 ), X(W02 ), . .. , X(-W1 -02' -(0n- 1 )n

= (2n) n-i NPn (0)1 .. -. In1) + 0(1 ) - (2.15)

Equation (2.13) is the formal definition of the nth order spectral density function
and assumes, among other thing.. that X(t) is stationary and has an nth order cumulant that

is integrable. If in addition X(t) has a finite Fourier transform, then the nth order spectral

density function can be expressed as Eq. (2.15). As a result of the independence propert,

of cumulants discussed above, Eq. (2.15) shows that the nth order spectral density
function is zero unless the Fourier transforms are statistically dependent.

The lowest order spectral density function (n=2) is just the power spectrurn. For a

zero mean process X(t) the second order cumulant is equal to the second order expected

va-lue:

[X(t), X(t+t)1 2 = (X(t) X(t+t)) = R(C) (2.1o)

SEquation (2.13) then yields the familiar definition of the power spectrum as the Fourier
transform of the autocorrelation function R(T). Equation (2.15) yields the expression for

the power spectrum as the expected value of the magnitude squared of the Fourier

transform of the time set ies, as gi ven in Eq. (2.1). The next higher order spectral densit,,
function (n=3) is the bispectrui. For a zero macn process the third order cumulant is
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equal to the third order expected value, so Eq. (2.15) simplifies to Eq. (2.3) for the case of
the bispectrum,.

2. 1 .3 Irincipal Domain of the Discrete Time Bispectrum

For a real, discrete time series X(j), the bispectrum is defined over the ((1)1,(12)

plane given by t -7 < m1 < 7z, -T < (02 < )}. However, because of various symmetries in I

the bispectrum many regions of the bispectrum are equivalent. In this section these
,vlinmelries will be described and the principal domain (the region that contains within it n)
equivalent values) will be defined.

If X(wo) is the Fourier transform of the discrete time series X(j), then fllowing

1. (2.15), the bispectrum is

B (co1 ,C02) = (X(0 1 )X() 2 )X(0)3 )), (2. 17

w here

(03 = 2nn -(wil + W2 ), n = 0, 1. (2 )

The value of n is restricted to 0 and 1 because for any other values there are no values of
0). )2, and 03 in the domain from -n to nt that satisfy Eq. (2.18). It can be seen from

E'q. (2.17) that the Value of the bisnectrum is not changed if any pair of frequencies is

intcrchaneed. This observation leads to the following symmetry relationships:

B(w 1 ,)2) = B (02,(0 1 ) , (2. 19 a)

B(0o1 ,0 2 ) = B((03 ,0) 1 ) , (2.1Q b)

B(co1 ,0 2 ) = B() 3 ,0) 2 ) • (2.1,.)

1,mr n 0, lqs. (2. 19b) and (2.19c) can be written as

B(0)1t,02) = B(-(,1-')2,)1 ) (2. I d)

B((w ,0)2) = B(-(t -w2,0):,) . ,"; '



For n = 1, these symmetry relationships are given by

B(0)j,02) = B(2/t-0)l-0 2 ,0)) (2.190

B(0)l,02) = B(2n-oi-)2,0 2) . (2 .19g)

One additional symmetry relationship results from the assumption of a real time series:

B(o)1,02) = B (-)1,-(02) • (2.19h)

Using these symmetries, a principal domain of the bispectrum can be defined.
From Eq. (2.19h), it follows that the regions of the (W1, (02) plane shown in Fig. 2.1 (a)

are equivalent. Thus it is only necessary to consider the upper half of the plane (positive

(1)2). From Eq. (2.19e), the two triangular regions shown in Fig. 2.1(b) are equivalent.

Combining Eq. (2.19e) with Eqs. (2.19h) and (2.19a), it can be seen that the two

triangullar regions in Fig. 2. 1(c) are also equivalent. Thus it is necessary to consider only

positive values of both (o1 and (02.

Applying Eq. (2.19a) to the positive (CO1, 02) quadrant results in two halves of the

quadrant being equivalent, as shown in Fig. 2.2(a). Equation (2.19f) implies that the two

triangles in Fig. 2.2(b) are equivalent, while Eq. (2.19g) implies that the two triangles in

Fig. 2.2(c) are equivalent. No other symmetry relationships can be applied to further

eliminate equivalent regions in the bispectrum. Thus the principal domain is the triangular

region shown in Fig. 2.3(a).

Although this triangular region is the principal domain, if the time series is a

stationary, continuous time function that has been low pass filtered prior to digitizing such

that there is no energy above the Nyquist frequency (no aliasing), then the bispectrum

should only be nonzero in the triangular region shown in Fig. 2.3(b) (Hinich and

Wolinsky, 1988). This result is due to the fact that it is only within this triangular region

that the sum o(1 + (02 is less than the Nyquist frequency. Thus with proper filtering it is

only necessary to compute the bispectrurn over the isosceles triangle shown in Fig. 2.3(b).

9
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2.2 ESTIMATION OF THE BISPECTRUM

2.2.1 The Unnormalized Bispectrum Estimate: Averaging in Frequency
and in Time

The estimator used to estimate the bispectrum for the analysis presented in this

report was developed by Hinich (1982) and is based on a discrete Fourier transform of the

data. For the discrete time series x(t), t=O, 1, ... N-i, the discrete Fourier transform is

given by

N-1

X0) x(t) e N J= 0 , 1 , .... N-i 1 (2.20)
t--0

The frequency associated with the jth component is

f fs'j-=O, 1,.. 2
J N

- (N -j) f1,N ( 2 .2 1 )
=---N s J="-+ 1, ... ,N-1 (2.21

where fs is the rate at which the time series was sampled. The discrete Fourier transform is

computed using an FFT algorithm.

A consistent estimate of the bispectrum (one whose expected value approaches the

true value and whose variance goes to zero as N approaches infinity) can be constructed

asing an FFT of the time series. The expected value of the complex function

F(j,k) = N2 X(j)X(k)X*(j+k) (2.22)

is equal to the bispectrum B(fjfk) plus terms on the order of N- 1. Thus F(j,k) is an

unbiased estimate of the bispectrum. lowever, it is not a consistent estimale of the

hisp)Cctrum because its variance increases with N. To obtain a consistent estimate, citiler

the tunction F,k) can be averaged in frequency, or multiple realizations o F(j ,k) ca Ihe

averaged in time, or both.

To average in frequency, the function F(jk) is averaged over ;0l.accn t Aleu,, in a

square of M2 points centcred at the points

13



(gn,gn) (( 2 m-1)M -1 (2n-1)M-1
2 ' 2 0

AN + .5]

n=1,...,m n _ 3-a +

where 1-1 denotes the "greatest integer not exceeding" function. Thus the frequency

averaged bispectrum estimator is given by

mM-1 nM-1

-(2n)= I I F(j,k)

j=(m-1)M k=(n-1)M

j,k: 0 < j<-NO<k j, 2j +k<N (2.23) 0

If the bispectrum is slowly varying over the square and if the power spectrum is slowly
varying over the band of width M centered at the appropriate frequencies, then the variance

of this estimator is given by

VAR B(m,n) = N M4 Q(m,n) P(fgm) P(fgn) P(fg,,1+gn) + O(M/N) , (2.24)

where Q(m,n)=M 2 if the square is entirely within the principal domain; otherwise it is 0

equal to the number of .j,k) within the square but not on the boundaries j=k or 2j+k=N
plus twice the number of (j,k) on the boundaries. P(.) is the power spectrum of the time
series. From Eq. (2.24) it can be seen that the estimator given by Eq. (2.23) is a consistent
estimator for values of M given by •

- < M < N

The bias increases and the variance decreases as M increases. •

To average the bispectrum in time also, the time series can be divided into
L segments, each of length N, and the bispectrum is estimated (and possibly avcragcd iII
frequency) for each segment and all L estimates are averaged together. If cach of thc 0
L hispectrum estimates is uncorrelated, the variance of this coherent average is ust

14



0A

* VAR ,L(m,n)= VAR B(m,n) (2.26)L

In this case, consistency is obtained for values of L and M given by

,,*< M < N (2.27)

-VL

Thus consistency can be obtained by averaging in time as well as frequency.

The tradeoffs between frequency and time averaging can best be understood by

examining the variance of the bispectrum estimate. From Eqs. (2.24) and (2.26), it can be

seen that the variance of the bispectrum estimate is proportional to

N
LM

2

where N is the length of the FFT, L is the number of bispectra that are coherently averaged

in time, and M is the size of the square over which the bispectrum is averaged in frequency.

The total number of samples used to estimate the bispectrum is NL. The resolution of the

bispectrum in frequency is given by

Mfs
N '

where fs is the sampling rate. If, instead of estimating the bispectrum with FFTs of length

N and coherently averaging L bispectra, the bispectrum is estimated with a single FFT of

length N'=NL but with the same sampling rate, and then, if this bispectrum is averaged in

frequency over a square of size M'=ML, the variance and the resolution are the same as the

bispectrum estimate using FFTs of size N. Thus, averaging in frequency and averaging in

time are equivalent if the appropriate choice of M is made. The advantage of dividing the

time series into L segments of length N and averaging in time is that it requires significantly

fcwCI cdi.ulations and can thus be performed faster and with less storage requirements than

computing one bispectrum using NL samples. The potential liability of this approach is

that if the resolution of the FFT is significantly coarser than the bandwidth of the nonlinear

component, the presence of the nonlinearity will be reduced in the bispectrum. Thus the

best choice of N, M, and L is, as is usually the case, to some extent data dependent.
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As can be seen from the above expressions, decreasing the value of M improves the

resolution but increases the variance of the bispectrum estimate. This increase in variance

can be offset by coherently averaging the bispectrum over a longer time, i.e., increasing L.

olhwever, since L is related to the variance by L- 1 whereas M is related by M- 2 , decreasing

M by a factor of 2, for example, requires increasing L by a factor of 4 to achieve the same

variance. In practical situations there are almost always limits to how much L can be

increased, the limits being determined by the stationarity of the time series. Thus the

frequency resolution of the bispectrum that can be achieved in practice depends on the

stationarity of the time series. Furthermore, the improvement in resolution that can be

achieved is not linear with the increase in coherent averaging time, but instead goes as the

square root of the increase in averaging time.

2.2.2 The Normalized Bispectrum: Statistical Properties

The bispectrum can be normalized to produce a quantity whose asymptotic statistics

can easily be calculated. The asymptotic distribution of the estimator given by Eq. (2.23) is

complex normal and independent for each frequency pair. Thus the distribution of the

normalized bispectrum given by

2(M 2 1B(m, n) 2
X2(mn) = 2Bm'- 1 (2.2 8)

VAR B(m,n)

is asymptotically noncentral chi-square with two degrees of freedom and noncentrality

parameter

X(m,n) = 2 fg,,fg) , (2.29)
N M4 Q(m,n)

where

Y(fgm'fgs) IB(fgm,fg.) (2.30)
i/P(fg.) P(fg,) P(fg 4 .gn)

is called the skewness function. If the time series is Gaussian, its skewness function will

be zero for all frequency pairs and the distribution of the normalized bispectrum is just a

central chi-square with two degrees of freedom (the noncentrality parameter will be zero).
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This in.. ties that an a priori threshold can be estimated for the normalized bispectrum such

that values of the normalized bispectrum that exceed the threshold can be said to be

representative of a non-Gaussian time series with a probability of false alarm that is related

to the threshold. Thus the normalized bispectrum can be used to discriminate between

Gaussian and non-Gaussian time series (Hinich, 1982).

In practice, an estimate of the normalized bispectrum given in Eq. (2.28) requires

an estimate of the variance of the bispectrum estimate, which in turn requires an estimate of

the power spectrum in the expression for the variance. If the power spectrum is estimated

by

P(j) = NIX(j)12  (2.31)

and is smoothed over a band of at least M adjacent values (or averaged in time), then this

estimate of the normalized bispectrum using the estimated power spectrum will also be

asymptotically noncentral chi-square distributed with two degrees of freedom and the same

noncentrality parameter. If the bispectrum is coherently averaged over L segments, then

the distribution of the normalized bispectrum after averaging is still noncentral chi-square
with two degrees of freedom but with noncentrality parameter LX(m,n).

A sliding average can be used to average both the power spectrum and bispectrum

in time. The temporal average of the power spectrum for L records is given by
L-1

PLO) + -k1) l a)

(L)k L I(2.32)

* X Otk-1
k.1

where 0 < t < 1 and p(a) = 0. A similar expression for the time averaged bispectrum can

0 be obtained. Block averaging results when (x=1).

If a sliding average is applied to the bispectrum, then its variance is given by

0

17



L

S(Ck-1)

VAR B(a ) (m,n)= k1 VAR B(m,n) , (2.33)

where VAR B (m,n) is the variance of the bispectrum given by Eq. (2.24) (ignoring terms

on the order of M/N) with the averaged power spectrum used as the estimate of the power
spectrum. For block averaging (a=l), the ratio of the two summations in Eq. (2.33) is just
L-1.

From a detection point of view, the issue is how large the normalized bispectrum

statistic given by Eq. (2.28) has to be in order to confidently reject the Gaussian noise only
hypothesis and assert that a non-Gaussian signal is present. Shown in Fig. 2.4 is a plot of

the probability of false alarm as a function of the normalized bispectrum value based on the

central chi-squared distribution function with two degrees of freedom. The plot is

approximately linear on a log false alarm scale with a slope of 4.6 per decade. To operate

at a false alarm rate of 10-3 , one would reject the hypothesis that noise only is present (the

normalized bispectrum statistic is central chi-square distributed rather than noncentral chi-

square distributed) for values of the normalized bispectrum statistic that are 13.8 or larger.
Since the mean value of the normalized bispectrum statistic is equal to the noncentrality

parameter, then the noncentrality parameter must be 13.8 or larger to achieve a probability

of detection of 0.5 at this false alarm rate. This result is based on detection at a single point

in the bispectrum. Summing the bispectrum over its principal domain can also be used to

detect the presence of a non-Gaussian signal (Hinich, 1982).

2.3 THE BISPECTRUM WATERFALL S

It is typical to view the time history of the power spectrum in a waterfall display

format, where the vertical axis is time and the horizontal axis is frequency. Because the

bispectrum is a function of two frequencies, it is not possible to directly display it in a
waterfall format. However, it is possible to reduce the two-dimensional bispectrum to a

form that is amenable to a waterfall display format. This is done by summing over the
principal domain all values of the normalized, averaged bispectrum X2 (m,n) such that the
sum of the two frequencies (fgmf gn) is constant
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x2(i) = X X2(m,n) (2.34)
m,n: m+n=j

The frequency pairs that satisfy this constraint lie along a diagonal as shown in Fig. 2.5.
"[his summation is repeated for all frequencies (fgmfgn) that are represented in the Fig.2.5

hispectrum. In this way the two-dimensional bispectrum has been collapsed to one

dimension and can then be displayed (with loss of information) as a function of time in a

waterfall format, much like a power spectrum waterfall.

Since the bispectral estimate at each frequency pair is asymptotically independent,

then under the assumption of Gaussianity each value in this waterfall will asymptotically

have a central chi-square distribution with 21 degrees of freedom, where I is the number of

bispectral values included in the summation in Eq. (2.34). Since the mean and variance of
a chi-square distributed random variable are proportional to the degrees of freedom, values

of the waterfal at higher frequency values will have a larger mean and variance than values
at lower frequency values. This tends to produce an uneven display that hinders detection.

The summation in Eq. (2.34) can be scaled by the number of terms in the summation, thus

causing the mean values of the waterfall to be independent of frequency and resulting in a

variance that decreases at higher frequencies. The summation can also be restricted to

include only those values that exceed a specified threshold, so that the number of degrees

of freedom is determined by the number of large bispectral values rather than by the

frequency. This latter approach is illustrated in Fig. 2.6, where a signal with a bispectrum

at a single point has been added to Gaussian noise. The presence of the bispectral signal is

much more obvious in the waterfall than in the full bispectrum, demonstrating the

usefulness of the waterfall presentation for detecting the presence of bispectral signals in

noise.
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3. DETECTION OF NON-GAUSSIAN SIGNALS IN NON-GAUSSIAN
NOISE

It is shown in Hinich and Wilson (1990) that the statistic

CH(m,n) = 2LM4 Q l(mn) IB(N)(m'n) - Bn(m'n2 o. 0
N Ps+n(fg,)Ps+n(fg,)Ps+n(fg, g)

where Bn is the bispectrum of the noise, Ps+n is the signal-plus-noise power spectrum,

and B(N) is a consistent estimate of the measured bispectrum such as given by Eq. (2.23),

is approximately a central chi-square random variable with two degrees of freedom under

the null hypothesis of noise only. Under the alternative hypothesis of signal plus noise it is

a noncentral chi-square random variable with noncentrality parameter given by

.(m,n) = 2 L M4 Q-(m,n)
N (l+p'l(fg,))(l+p'l(fgo))(l+p- (fg 9n)) (fgmfgn) , (3.2)

where ys is the skewness function of the signal and p is the signal-to-noise power ratio:

p M) = PsMf (3.3)

Pn(f)

In Eqs. (3.1) and (3.2) it is assumed that a block average in time of L records is applied. If

a sliding average is applied, the factor L is replaced by the appropriate ratio of summations

that appears in Eq. (2.33). Detection occurs when the value of the statistic given by

Eq. (3.1) exceeds a threshold determined by the central chi-square distribution (see

Fig. (2.5)). Since the mean value of Eq. (3.1) is equal to Eq. (3.2), the value of the

noncentrality parameter given by Eq. (3.2) determines the detectability of the signal.

From Eq. (3.2) it can be seen that several factors contribute to the value of the

noncentrality parameter. One is the skewness function ys which is a characteristic of the

signal. one is the S/N p, which is a characteristic of the signal and noise power levels, and

the rest are characteristics of the processing. Given that a signal has a nonzero skewness

function, then there is a tradeoff between S/N and processing parameters that determines if

the nonzero skewness will result in a sufficiently large noncentrality parameter to allow its

detection at a given false alarm rate. For small values of the skewness function, the
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processing parameters and S/N have to be such that their product, given by Eq. (3.2),

remains large enough to produce a sufficiently large noncentrality parameter for detection.

The noncentrality parameter has a linear dependence on the number of temporal averages L,

a quadratic dependence on the number of frequency averages M (Q is equal to M2 except

on the boundaries of the principal domain), and an approximately cubic dependence on S/N

(for low S/N). This implies that if the S/N decreases by a factor of 2 (3 dB), then it is

necessary to either increase the number of temporal averages by a factor of 8, increase the

number of averages in frequency by a factor of "f8, or increase both the frequency and time

averaging such that the product LM2 increases by a factor of 8, in order to retain the same

level of detectability.

Equation (3.2) demonstrates the essential relationship between signal

characteristics, noise characteristics, and processing parameters that determines the

detection performance of the bispectrum. To determine the viability of bispectrum

processing for detection of non-Gaussian signals, it is essential to know the skewness

function of signals of interest. Given a skewness function, the processing parameters

necessary to achieve detection as a function of S/N can then be determined. It should also

be noted that Eq. (3.2) is relevant for "narrowband" detection, i.e., detection at a single

point in the bispectrum. One can also consider "broadband" detection in which the

detection statistic is based on bispectrum values over the entire principal domain. Examples

of the detection performance as a function of these parameters for the broadband case can

be found in Hinich and Wilson (1990), which is included in Appendix A of this report.
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4. TIME DELAY ESTIMATION USING THE CROSS-BISPECTRUM

4.1 TIME DELAY ESTIMATION BASED ON THE PHASE OF THE
CROSS-BISPECTRUM

Following the formal definition of higher order spectra for a single process in

Section 2.1.2, the cross-bispectrum can be written as

B112(w01, u)2) = 32{[Xl(t+tl)Xlt+t 2 ) X2 (t)] , (4.1)

where X1 (t) and X2 (t) are two stationary zero mean random processes. By arguments

similar to those given in Section 2.1.3, it can be shown that the principal domain of the

cross-bispectrurI is given by the region in Fig. 4.1(a). The support set is given by

Fig. 4.1 (b). The cross-bispectrum can be estimated in a manner completely analogous to

the bispectrum estimate given by Eqs. (2.22) and (2.23).

If X1 (t) is just a time delayed version of X2(t), then

B1 12 (m,n) = B111(m,n) ei2fm.,. (4.2)

Thus B 1 12 is just a phase shifted version of B1 11:

0112(m,n) = 0111(m,n) + 2 7tfm+n , (4.3)

where 0112 and 0111 are the phases of the cross- and auto-bispectrum, respectively.

Several non-parametric methods for estimating this time delay have been put forth that

essentially rely upon estimates of the cross- and auto-bispectrum phases. (Nikias and Pan,

1988).

The obvious estimator of the phase of the cross-bispectrum is just

0 12(r,n) = tan1 [BI2(rnn) (4.4)
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where B1 12 and B1 )2 are just the imaginary and real parts of a consistent estimate of the

cross-bispectrum. The estimate of the auto-bispectrum phase is similar. In Hinich and

Wilson (1989) we derived the variance and distribution of this phase estimator and showed

that the exact distribution could be approximated by a Gaussian distribution in most cases.

If the time delay is estimated from Eq. (4.3) as

t(m,n) = 1 12(m,n) - 0 1 11(m,n)2nfm+n (4.5)

then it can also be approximated by a Gaussian distribution since it is just the scaled

difference between two approximately Gaussian random variables. The variance of the

phase difference in additive Gaussian noise was shown in Hinich and Wilson (1989) to be

VAR{0 1 2(m,n) - 011 1(m,n)}= 2NM 2Q" (m,n) [I 1 +p1(fm)] L +p1 (fn)'P1"(fm+n)

{1.ReWN)(fn+m) e-i2M.nT]} (4.6)

where W1M(f) is the coherency spectrum of the noise:

W12(f) = p1 (4.7)

The effects of signal skewness, processing parameters, S/N, and noise coherence on the
variance of the time delay estimate are clearly demonstrated in Eq. (4.6). Specific examples

of the effect, of these parameters are described in Hinich and Wilson (1989), which is

included a Appendix B of this report.

4.2 AN AI [RNATIIVE TIME DELAY ESTIMATOR

It kvc IctiNIC ,l etlilator S6 (i) such that

S)= 1 B1 2(m,n) B111(m,n) , (4.8)
Sm,n) m+ni
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where B1 12 and B11 1 are consistent estimators of the cross- and auto-bispectrum

respectively, then

E{SB(i)} = B,1 2(fm,fn) Bi1i(fm,fn) + NPj(fm)Pj(fn)P; 2 (fm+n) . (4.9)
(mn):m+n=i

This equation derives from the expression of

E{X1 (m)XI(n)X 2(m+n)X 2(m)X(n)X2(m+n)} in terms of its cumulants and the

relationship between the cumulants of DFTs and cumulant spectra given by Brillinger

(1975). Ifwe define

,S ri)= SBWi (4.10)
P 1 (fm)P1 (fn)P 12(fm+n)

and

B112 (m,n)
1 12(M, n) fP l(fm)Pl(f n)P2(fm+n) (411)

and similarly for F1 11 then we have

E { St(i)} = Sr(fi) + Nl(i)W; 2(fi) (4.12)

where

Sr(fi) =mn+ [1i2(fm,fn) Fii 1 (fm,fn)
(rn,n):m+n=i

cross-skewness spectrum (4.13)

and 1(i) is the number of terms in the sum in Eq. (4.8). We can see from Eq. (4.2) that if

X1 (t) is a time delayed version of X2 (t), then the phase of the cross-skewness spectrum is

just 2tfi+n "t' and its magnitude is the sum of the square of the skewness function over all

(m,n):m+n=i. Thus the time delay can be estimated directly from the phase of the cross-

skewness spectrum and the magnitude of the cross-skewness spectrum at each frequency is

related to the square of the skewness function of the signal.
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The cross-skewness spectrum thus has characteristics similar to the cross-power

spectrum. If in analogy to the cross-skewness spectrum we define a cross-skewness

correlation rF(t) as the Fourier transform of the cross-skewness spectrum, then rl-(t) will

have many of the properties of a crosscorrelation function. For a broadband non-Gaussian

signal, the cross-skewness correlation will have a maximum at the time delay t' and be near

zero elsewhere. Thus the cross-skewness spectrum and correlation can serve as useful

txls for measuring the time delay of broadband non-Gaussian sources.
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APPENDIX A

DETECTION OF NON-GAUSSIAN SIGNALS IN NON-GAUSSIAN

NOISE USING THE BISPECTRA (Hinich and Wilson (1990))

(This paper has been published in IEEE Trans. Acoust, Speech,
and Signal Proc. 38(7), pp. 1126-1131 (1990)).
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Detection of non-Gaussian signals in non-Gaussian noise using the

bispectra

Melvin Hinich and Gary R. Wilson, Applied Research Laboratories, The

University of Texas at Austin, Austin, Texas 78713-8029

Bispectrum analysis provides a means of testing a stochastic time

series for non-Gaussianity (including nonlinearity). For cases of

practical interest, the non-Gaussian time series may be partially

masked by either Gaussian or non-Gaussian noise. In this paper we

cast the problem of detecting a non-Gaussian time series in the

presence of additive Gaussian or non-Gaussian noise into a classical

hypothesis testing framework, using the sample bispectrum as the test

statistic. The power of the test is demonstrated as a function of

signal-to-noise ratio, the degree of skewness of the signal, and

processing parameters. The results are compared to the power of a

classical energy detection test.

INTRODUCTION

The bispectrum is becoming a useful and practical tool for

non-Gaussian time series analysis and diagnosis in fields such as

biomedicine (Barnett, et al, 1971), fluid mechanics (Lii, et al, 1976),

oceanography (Hasselmann, et al, 1963), plasma physics (Kim and Powers,

1979), geophysics (Hinich and Clay, 1968), and economics (Hinich and

Patterson, 1985). A recent tutorial on bispectrum estimation has been

provided by Nikias and Raghuveer (1987). Since most realistic

35



measurements are corrupted by inte-fering noise, and in some cases

dominated by noise, application of the bispectrum to experimental

measurements of a time series requires an understanding of the effects of

interfering noise on the bispectral measurements.

In this paper we are only concerned with the effects of noise on the

ability of the bispectrum to detect the presence of a non-Gaussian time

series. The effects of noise on the accuracy of a bispectrum estimate is

not directly addressed. Using the bispectrum as a test for Gaussianity of

a time series has been described by Hinich (1982) for the signal only

case. In this paper the ability to test for Gaussianity of a time series

in the presence of independent noise is demonstrated as a function of

signal-to-noise ratio (SNR). In Section I the problem is posed in a

classical hypothesis testing framework. In Section II the bispectrum is

defined, followed in Section III by development of the bispectrum test

statistic to address the hypothesis test specified in Section I. The

power of this test for a specific signal and noise case is demonstrated in

Section IV, and compared to the power of a standard energy detection test

in Section V.

I. SIGNAL MODEL

Suppose that we observe a signal {s(t)} plus noise {n(t)}, where the

(s(t)) is a non-Gaussian (possibly nonlinear) stationary random process

and {n(t)) is in general also a non-Gaussian stationary process. Let s(t)

have a power spectral density Ss(f) and bispectrum Bs(fjlfk). Similarly,

let the noise n(t) have a power spectral density Sn(f) and bispectrum

Bn(f jfk). We will use a classical hypothesis testing framework to
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determine the detectability of this non-Gaussian signal in additive noise

from a finite sample of the input signal.

Let {y(t)1 denote the input signal that we observe for a finite time

using an equally spaced discrete-time sampling method that avoids any

aliasing. We use the standard convention that t is an integer, which

means that the sampling interval is set equal to one. Under the null

hypothesis that there is no signal present in the observed record,

y(t)=n(t) for t=l,...,N where N is the sample size. If the signal is

present, y(t)-s(t)+n(t). We present a test of these compound hypotheses

for a given false alarm probability a under the following assumptions

about the signal and noise.

(1) All the moment functions exist for the signal and noise.

(2) The signal and noise are M-dependent. That is, for any

tl,...tn , [s(tl),,1S(tn)I and {s(tl+m),...,S(tn m)I are independent for

m>M, and similarly for n(t).

This is a strong form of a "short memory" assumption that is needed to

obtain the asymptotic Gaussian distribution that we need. It is, however,

the most intuitive of the standard mixing conditions used to prove

asymptotic results. These two assumptions guarantee that the signal and

noise spectrum and the polyspectra of all orders exist. We will use the

estimated bispectrum of a sample of the observed y(t)'s to detect the

non-Gaussian signal. Let us now review the definition of a bispectrum and

its use as a tool to study non-Gaussian random signals.

II. THE BISPECTRUM

The bispectrum of a discrete-time signal is a periodic function in

two frequency indices. Let {y(t)} denote a real zero mean stationary
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continuous-time random signal. Assume all expected values, sums, and

integrals used below hold. The bicovariance function of the process is

c(u,v)-Ey(t)y(t+u)y(t+v), which does not depend on t since the process is

stationary. Its Fourier transform

B(f,g) - f c(u,v) exp[-i2n(fu+gv)]dudv (i)

is called the bispectrum. The bispectrum's symmetry lines are f=g,

f-h(2f=-g), and g=h(2g--f). Another symmetry holds since c(u,v) is real,

namely B(-f,-g,-h)=B*(f,g,h), where * denotes complex conjugation. This

symmetry yields the symmetry line f--g (Fig. 1). Thus the pointed cone

C-{f,g: O<f,g<f} is a principal domain of this continuous time bispectrum

in the (f,g) plane.

Now consider the discrete-time sequence {y(n)j where the sampling

rate fo is greater than 1/2. The bicovariance function of this sampled

version of {y(t)} is really an array {c(j,k): j,k-O,(+/-)l,(+/-)2,...}.

Then the bispectrun of the sampled data is defined, analogous with (1), to

be given by the Fourier transform in two indices:

B0 (f,g) = £jk c(j,k) exp[-i2n(f+g] (2)

The sampling introduces an infinite set of parallel symmetry lines

2f+g-n, 2f-g=n, f+2g=n, and f-2g=n. The cone C is only cut by the

symmetries 2f+g-n, and thus the principal domain of B is the triangle

{f,g: O<f<1/2, g<f, 2f+g<lj in the cone C. If the discrete-time sequence

is stationary and unaliased, then the bispectrum of the sampled data can

be non-zero only in the triangle defined by {f,g: 0 < f < 1/2, g < f,

f+g _ 1/2) (Hinich and Wolinksky, 1988). Let us now drop the zero

subscript on B to simplify the notation.
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III. BISPECTRUM TEST STATISTICS

Given a sample of the signal [y(l),...,y(N)}, let B(N)(fj,fk) denote

a consistent estimator of B(fj,fk) for a sample of size N of ly(n)}. This

estimator can be computed directly by smoothing the sample bicovariance

(Rao, 1983), smoothing the sample bispectrum in the bifrequency domain

(Hinich, 1982), or by dividing the sample into pieces and averaging the

piecewise sample bispectra and then doing bifrequency smoothing (Lii and

Rosenblatt, 1982). Parametric methods can also be used to estimate the

bispectrum (see Nikias and Raghuveer, 1987).

Let A. denote the bandwidth of the bispectrum for the smoothing

method used. For example, if the sample of length N is divided into L

pieces and the L piecewise sample bispectra are averaged and the result is

then smoothed in bifrequency over a square whose sides are of length M,

then N= LM-. Assume (to satisfy consistency) that aNO(I/4N). Under

some short memory restriction which holds for the M-dependence stated in

assumption (2), Brillinger and Rosenblatt (1967) or Rosenblatt (1985) show

that for large N, the distribution of

6Nl1/ 2 [B(N)(fj,fk ) - B(fjfk)I/[Sy(fj)Sy(fk)Sy(fj+k)]1/2  (3)

is approximately complex Gaussian Nc (0,1) where Sy is the spectrum of the

observed signal. This approximation is of order 0(1/N). Thus if H is

true, ANN/ 2B(N) (fjifk)/[Sy(fj )Sy(fk OSy(fj+k) 1]/2 is approximately a

complex Gaussian variate whose mean is Bn(f j,f k ) and variance is 1.

Another equally important large sample result that follows from the

asyi.ptotic results developed by Brillinger and Rosenblatt is that these

statistics can be treated as independent random variables over the grid in

* the principal domain if the grid width is larger than or equal to the
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bandwidth, i.e., B(N)(fj,f k ) and B(N)(fr'fs) are independent for jsk or
kos if If fj l f. j > N  or l fs+l-fsl>_6N .

k~i + If - o

The asymptotic independence and Gaussianity imply that the statistic

CH(fjf k ) - 26NlB(N)(fj,fk)-Bn(fjfk)I2/Sy(fj)Sy(fk)Sy(fj+k) (4)

is approximately a central chi-square varidte with 2 degrees of freedom if

Ho is true. If the signal is present and its bispectrum Bs is nonzero,

the CH(fj,fk) is approximately a noncentral chi-square statistic with

2 degrees of freedom and noncentrality parameter

A(j,k) = 26NIBs(fj~fk) 2/Sy(fj)Sy(fk)Sy(fj+k) (5)

Artificial data analyses indicate that this approximation holds for

samples as small as N=256 if 6;/-14-N (Ashley, Patterson, and Hinich,

1986).

If in expression (4) we replace Bn(flfk with B(N)(fj,fk), (assuming

that we have a noise-only sample of the data) and the spectrum Sy at the

frequencies [fk} with a consistent spectrum estimator denoted S(N) whose
y

rms error is O(1/N), we then have a statistic that is approximately

chi-square 2 under the null hypothesis. Summing these approximately

chi-square statistics for all bifrequency pairs in the principal domain

yields a statistic whose distribution is approximately chi-square with 2K

degrees of freedom, where K is the number of bifrequency pairs for the

nonzero bispectral values in the principal domain (approximately N2/16).

For 6N-/4"N, K is given approximately by

2
K;;( 1 ) (6)

The detection test is to reject Ho if the test statistic

40



TCH - 2 E B( N ) (f )-B( N ) (ff 2/S(N) ) )S ( N )  ( N )~TC 6-2NEjk (f'k (fjk) (f (f Y(fSj+k) (7)

is greater than a threshold T where Pr( 2K>T )-(x and T can be determined

from tables of the X2 distribution. The summation over the (j,k) is over

the support set of the bispectrum given by {j,k: 0 < j < 1/2, k < j,

j+k < 1/2) The false alarm probability is approximately a since the

distribution of TCH is approximately that of a X2K variate for large N.

Note that the detection test requires an estimate of the noise-only

bispectrum and an estimate of the spectrum of the data (or a priori

knowledge of the two). The statistical power of this test to detect a

non-Gaussian signal is a function of the noncentrality parameter A which

is the sum over (j,k) in the principal domain of the A(j,k) given by (5).

We discuss the power of the test in the next section.

IV. POWER OF THE TEST

From (5), the noncentrality parameter for che test statistic is

A E 2k (+P ( fsff 0)) (l+p (fj+k)) (8)

where

Ss (fjf k ) - IBs(fjffk)1 2/Ss(fj)Ss(fk)Ss(j+k) (9)

* and p(f)-Ss(f)/Sn(f) is the signal-to-noise power ratio at the frequency

f. rs(fj,f k ) is called the skewness function of the signal. Let us

define the weighted average skewness of the signal as r., where

s A E (j,k (ffk)w(fj)w(f)w(fj+k) (10)

where w(f)-(p(f)+p(f)p-l)/(p(f)+l) and p is an average signal-to-noise

ratio (SNR) across all the frequencies. The function w(f) weights the

0 skewness function of the signal by the SNR at each of the three
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frequencies fj, fk' and fj+k relative to the average SNR. If p(f)-p, then

w(f)-l. Thus the noncentrality parameter is

2NA- rFs  (11)

(l+p-l)3

It is clear from (11) that A is linear in rs and approximately cubic in p

(for low SNR). It is also clear that the power of the test is dependent

on the skewness of the signal but independent of the noise skewness,

assuming that it is known or can be estimated.

The probability of detection is the probability that the detection

statistic given by (7) will exceed the threshold Ta, where the detection

statistic under the alternative hypothesis is noncentral chi-square with

2K degrees of freedom and noncentrality parameter given by (11). We will

now examine the probability of detection as a function of average SNR p,

weighted average skewness rs, and processing bandwidth "N- In all cases,

the probability of false alarm a was set to 10- 3 .

Shown in Fig. 2 is a plot of the probability of detection as a

function of average SNR for several values of the weighted average

skewness r s. For these cases, N=10 4  6N--0.01, and K-625. Since the

noncentrality parameter given by Eq. 11 has a linear dependence on rs and

approximately a cubic dependence on p, at low average SNR it is necessary

for rs to increase by a factor of 8 to achieve a 3 dB improvement in

detection performance. This behavior can be observed in Fig. 2. Also

because of the cubic dependence on p, the detection curves exhibit a rapid

increase in probability of detection from near 0 probability to near a

probability of 1 over a small SNR range of only 4-5 dB.

A slightly different display of the relationship between the weighted
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average skewness and the SNR is shown in Fig. 3. In this figure, the

value of the weighted average skewness needed to achieve a probability of

detection of 0.5 is plotted as a function of average SNR for the same

values of N, 6N, and K as given above. The average SNR needed to achieve

a probability of detection of 0.5 is often referred to as the minimum

detectable level (MDL). At low average SNR the cubic dependence can be

observed in the slope of the curve.

The noncentrality parameter also has a linear dependence on N, the

sample size. Thus it is necessary to increase the number of samples by a

factor of 8 for a fixed value of rs to achieve a 3 dB improvement in

detection performance at low average SNR. Figure 4 shows a plot of N as a

function of average SNR for a probability of detection of 0.5. For this

case, 6N=0.01, K=625, and rs-8.

It can be seen from the previous figures that the bispectrum detector

can detect non-Gaussian signals at low average SNR for reasonable sample

sizes and reasonable (in our experience) values of the weighted average

skewness. Thus it appears that the bispectrum can be used to detect a

non-Gaussian signal even in the presence of quite low signal-to-noise

ratios. We will now compare this performance to an energy detector.

V. COMPARISON TO ENERGY DETECTION

If we wish to detect the presence of the signal without using its

non-Gaussian property, a reasonable choice for the detector would be an

energy detector. Energy detection relies on the power of the signal only

and does not attempt to make use of any possible non-Gaussian properties

of the signal. Thus comparing the performance of the bispectrum detector
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to the energy detector will serve to illustrate the effect on detection

performance of utilizing the non-Gaussian property of the signal.

The noise will be assumed to be Gaussian with zero mean and v3riance

2 The signal is also assumed to have zero mean and variance paN, where

p is the average SNR, as before. Since the energy detector does not make

use of the non-Gaussianity of the signal, the signal will also be assumed

to be Gaussian. Thus the signal plus noise is zero mean Gaussian with

variance (l+p)aN. For the observed time series y(t), t=l,2,...,N, the

test statistic for the energy detector is

N
TE E y2(t)/o (12)

t-l

The energy detector requires a knowledge of the variancP of the noise

process. If the vaiiance of the noise is not known a priori, it can be

replaced by its sample estimate, assuming a sample of the noise only

process is available. Under the null hypothesis of noise only, TE is a

central chi-square variate with N degrees of freedom. Under the

alternative hypothesis of signal plus noise, TE/(l+p) is central

chi-square N. The detection test is to reject the null hypothesis if the

test statistic TE is greater than a threshold Ta, where Pr( 2>T )=a, and cc

is the probability of false alarm. The probability of detection is the

probability that TE/(l+p) will exceed T..

Figure 5 shows the probability of detection as a function of SNR for

the energy detector for a=10- 3 and several values of the sample size N.

Because of the linear dependence on SNR, in contrast to the cubic

dependence of the bispectrum detector, the transition region from low to

high probability of detection is more gradual. For a probability of

detection of 0.5, Fig. 6 contains a plot showing the sample size required
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to achieve detection at a specified SNR. For low SNR, the sample size is

required to increase by a factor of 4 to achieve detection at a 3 dB lower

SNR.

A comparison of the detection performance of the bispectrum detector

and the energy detector can be made from Fig. 7. The SNR required to

achieve a probability of detection of 0.5 at a false alarm rate of 10 - 3

for a specified sample size for the energy detector and the bispectrum

detector is shown in this figure. The detection performance of the

bispectrum detector depends not only on the sample size and the SNR, as

the energy detector does, but also on the value of the weighted average

skewness. Detection performance curves are given for the bispectrum

detector for two values of the weighted average skewness in Fig. 7.

Obviously, the larger the weighted average skewness, the better the

bispectrum detector will perform. This example just demonstrates that if

the signal is sufficiently non-Gaussian, the bispectrum detector can

detect it at a lower SNR than the energy detector could detect a Gaussian

signal with the same sample size. If the energy detector were presented

with a non-Gaussian signal or non-Gaussian noise, its detection

performance is likely to be even worse than the optimum results presented

here (Machell and Penrod, 1989). On the other hand, the bispectrum will

completely fail to detect a Gaussian signal.

VI. SUMMARY AND CONCLUSIONS

Because bispectrum processing is becoming a more widely used tool in

time series analysis, it is useful to understand the behavior of the

bispectrum in the presence of practical measurement problems such as

interfering noise. In this paper we have focused on the ability of the
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bi.,pectrum to detect a non-Gaussian time series when that time series is

corrupted by non-Gaussian (or Gaussian) noise. The dependence on weighted

average skewness, sample size, and average SNR have been explicitly

identified and demonstrated. It was shown that for reasonable values of

weighted average skewness and sample size, the bispectrum can detect

non-Gaussian signals at quite low average SNR. It was also shown that for

reasonable values of skewness and sample size, the bispectrum will detect

a non-Gaussian signal at lower SNR than energy detection will detect a

Gaussian signal. Thus it is concluded that the bispectrum can be used

effectively to detect non-Gaussian signals in the presence of interfering

noise, and may perform better, depending on the degree of non-Gaussianity,

than energy detection. The results presented in this paper can be used to

determine under what conditions of weighted average skewness, sample size,

and average SNR the bispectrum can be used to detect a non-Gaussian

signal.
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APPENDIX B
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Time delay estimation using the cross-bispectrum

Melvin J. Hinich and Gary R. Wilson, Applied Research Laboratories, The

University of Texas at Austin, Austin, Texas 78713-8029

The cross bispectrum phase can be effectively used to estimate the time
required for a non-Gaussian signal to propagate between a pair of

spatially separated sensors in the presence of highly correlated
Gaussian noise. In this paper we present a consistent estimator of the
phase of the cross bispectrum, derive the exact distribution of the phase

of a complex Gaussian sample bispectrum, and show that in most cases
the exact distribution can be approximated by a Gaussian distribution.

Using this Gaussian approximation, we derive the variance of the time
delay estimate computed from the sample cross bispectrum of a signal in

additive correlated noise. This results allows the performance of time
delay estimators based on the cross bispectrum phase to be quantified
as a function of the sample size, the skewness of the signal, the signal-to-
noise ratio (SNR), and the noise correlation.

INTRODUCTION

The estimation of the time required for a signal to propagate between two

spatially separated receivers is a fundamental approach for measuring the
direction of arrival of the signal relative to the axis of the sensors. Estimating

direction of arrival of a propagating signal is a standard signal processing task
in geophysics, acoustics, and astronomy, as well as in radar and sonar systems.

The most widely used approach to estimating time delay is to find the

peak of the sample crosscorrelation function of the outputs of the two sensors
(Hamon and Hannan, 1974, and Knapp and Carter, 1976). This approach
works well if the signal is highly correlated and the noise is uncorrelated. In

cases where the noise is correlated, ambiguous results are often produced from

this crosscorrelation approach.
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If the signal is a stationary NON-GAUSSIAN time series, then higher

order spectra can be used to unambiguously estimate the time delay even in

the presence of correlated noise. Several methods for estimating the time delay

using the cross bispectrum have been presented by Nikias and Pan (1988).
The non-parametric methods essentially rely upon an estimate of the phase of

the sample cross bispectrum computed from the sensor outputs. The statistical

properties of such estimators have to be derived.

In this paper we present a consistent estimator of the phase of the cross

bispectrum, derive the exact distribution of the phase of a complex Gaussian

sample bispectrum, and show that in most cases the exact distribution can be
approximated by a Gaussian distribution. Using this Gaussian approximation,

we derive the variance of the time delay estimate computed from the sample

cross bispectrum of a signal in additive correlated noise. This results allows the

performance of time delay estimators based on the cross bispectrum phase to

be quantified as a function of the sample size, the skewness of the signal, the

signal-to-noise ratio (SNR), and the noise correlation.

This paper is organized as follows. Section I provides an introduction to

the cross-bispectrum, followed by a presentation of a statistically consistent

estimator of the cross-bispectrum phase in Section I1. Section III gives the

derivation of the distribution of the phase estimator, and Section IV compares

this distribution with an approximate distribution. Sections V and VI apply these
results to the specific application of time delay estimation of a non-Gaussian

signal, and Section VII includes the effects of additive Gaussian noise. Section
VIII compares the cross-bispectrum time delay estimation to time delay

estimation based on the cross-power spectrum, and Section IX summarizes the

results of the paper.

I. THE CROSS-BISPECTRUM

Let {x} denote a two dimensional zero mean vector random process in

continuous time whose components are denoted {xi} and {x2}. Assume that
(1) {x} is strictly stationary, and (2) the joint density of Ix(t 1 ),...x(tn)] for any finite

sequence (tl ,... ,tn) has bounded moments, and (3) the process has finite
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memory. By finite memory we mean that there exists a time shift D such that for
any (t1 .... tn), [x(tl),...,x(tn)] and [x(tl +d),...,x(tn+d)] are independent for all d > D.

These three assumptions are more stringent than those used by

Brillinger (1975) and Rosenblatt (1985) to prove the asymptotic properties of

sample bispectra of vector processes that we use in this paper. The more
restrictive assumptions that we employ are easier to understand than the more

general conditions and other restrictions on the joint distributions of the process

which Brillinger and Rosenblatt use.

Suppose that the two processes are simultaneously observed and
sampled using a standard method for obtaining unaliased discrete-time

sampled data. The processes are filtered by a bandpass filter whose effective
cutoff frequency is denoted fo, and the series are sampled at the sampling rate
2fo. Let us simplify notation by setting the time interval to the sampling interval

1/2fo and by using n rather than tn=n/ 2 fo as the nth time point.

The 1,1,2 cross-bispectrum BI 12(fg) is defined as follows.

B112(f,g) = I c 112(r,s)exp[-i2n(fr+gs)] (1)
r = - S =

where

c 112(r,s) = E[xl(n+r)xl(n+s)x 2(n)] (2)

is the cross-bicovariance. The following inverse Fourier integral transform of

the cross-bispectrum yields the relationship

C1 12(r,s) = fu B112(f,g) exp(i2ir(fr+gs) (3)

where Q is the square {f,g: -1/2 f < 1/2, -1/2 < g _< 1/2}.

11 The symmetry lines of this cross-bispectrum are easily derived from the

Cramer representation
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Xk(f) f exp(i2fn)dAk(f) for k=1,2 (4)

where E[dA1 (f)dA1 (g)dA2(h)]=Bl 1 2(f,g)dfdg if h=-f-g, and zero otherwise.

Clearly there is only one symmetry line, namely f=g. Since the processes are
real, there is one conjugate symmetry line in the (f,g) plane, the line defined by
f+g=O(h=O). It thus follows that the principal domain PD of the 1,1,2 cross-
bispectrum is the union of two triangles T1={f,g: 0 < f < 1/2, 0 < g f} and

T2={f,g: 0 < f_ 1/2,-f g <0} (see Fig. 1).

The support set for the amplitude of the cross-bispectrum is a
proper subset of the PD. B112 is identically zero in the triangle
OT={f,g: 0 < f < 112, 1/2-f < g < f} by the same argument as in Hinich and

Wolinsky (1988) for bandlimited signals.

II. ESTIMATING THE PHASE OF THE CROSS-BISPECTRUM

In this section we discuss a simple approach to obtaining an

asymptotically unbiased and Gaussian estimator of the real and imaginary parts
of B112. These estimators are then transformed to yield an asymptotically
unbiased and Gaussian estimator of the phase function o(f,g), where in polar

form

B 1 2(f0g) = B1 1 2(f,g) j expio(f,g)] (5)

Let N denote the sample size for the observation of x(n). Select a block
length L which is approximately VN. The number of whole blocks in the
record of length N is then [N/L], which is also approximately IN. Let Xkp(fm)

denote the fm=m/L term of the discrete Fourier transform of the pth piece
{Xk(l+L*(p-1)) .... xk(L+L*(p-1))} of data (k=1,2). The "raw" 1,1,2 cross-

bispectral estimator is the set products

Fp(mn) = L-X1(-fm)XL(-fn)X(fmn) (6)

64



for {fm,fn} in the PD.

The expected value of Fp(m,n) is approximately B1 12(fm,fn) with an error

of order o(1/L). Denoting the spectrum of {xk(n)} by Sk(f), the large sample

variance of the real and imaginary parts of (2/L)l/ 2 Fp(m,n) is

[ 1 +8(m-n)]Sl(fm)S, (fn)S 2(fm+n) + O(L-1) (7)

where 6(0)=1 and 6(k)=0 for nonzero k. These results follow from the asymptotic

theory presented in Chapter 4 -J Brillinger (1975). Moreover, the real and
imaginary parts are Gaussian and asymptotically independent as L -- -,

The estimator S112 of B112 which we use is the average of these Fp

values over the [N/L] non-overlapping pieces. The resolution bandwidth of this
estimator is AN=1/L. If L is greater than the finite memory length D, then the

variances of ReS112(fm,fn) and ImS112(m,n), the real and imaginary parts of

S112(fm,fn), respectively, are equal to 1/[N/L] times the large sample valiance of

the real and imaginary parts of Fp(mn), which is proportional to the expression

in Eq. 7. In other words, the large sample variances of the real and imaginary

parts are equal to the product of the three spectra multiplied by 02 =(2NAN 2 )- 1 .

If we assume that L=o(-Ni), then the bandwidth AN and the large sample
variance go to zero as N - o. Moreover, the real and imaginary parts of S112

are asymptotically Gaussian and independent. We will assume that N and L

are sufficiently large and the processes are sufficiently well behaved, that we

may apply these asymptotic results as large sample approximations.

There is one more large sample approximation that plays an essential

part in the application of statistical polyspectra theory. Returning to the raw
cross spectral values, Fp(fm,fn) and Fp(fr,fs) are approximately INDEPENDENT

for large L. This implies that the same holds for the S112 at different

bifrequencies.

Given these estimators of S112, the obvious estimator of the phase

function at the Fourier frequencies (fm,fn) is
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0 (fm,fn) = tan -1 [Si(m,n)/SR(mln) L] < ((fm,fn) < H (8)
2 2

where we now use the convenient abbreviations SR(m,n) and Sl(m,n) for the

real and imaginary parts, respectively, of the ESTIMATOR of the 1,1,2 cross-

bispectrum. We will use BR and BI as abbreviations of the real and imaginary

parts of the TRUE cross-bispectrum.

III. THE DISTRIBUTION OF THE PHASE ESTIMATOR

For each (mn) pair, SR(m,n) and SI(m,n) are asymptotically Gaussian

and independent with expected values BR(m,n) and Bl(m,n) respectively. We

will now derive the exact distribution of the phase estimator when they are

exactly Gaussian. It can be shown (Thomas, 1969) that the probability density

function of (D(fm,fn) given by Eq. 8 is

2 2 2
1' 11r 2 sin2( 0 1]-112 CO ((1)-0) ,9-- , FF2 o ( 1- 1e2 2  err -t---co

f(() = e 2c2 + ... COS(-) e2a erf c(9)
11 2f c

where the dependence on fm and fn has been dropped for compactness of

notation. The function 1F112(fm,fn) is called the cross-skewness function and is

given by

1-11 2(fm,fn) = B112(fr,fn)l (10)f~i 8_ f- S-11 fn S f- n I

The parameter 6 is just the true phase of the cross-bispectrum and is given by

6 (fm,fn) = tan - 1 (B(fm,fn) "(
(BR(fm,fn))

It can be seen from Eq. 9 that if r112 is zero, th phase estimator is

uniformly distributed, as expected. On the other hand, if 1-112 is large, then the

second term in the sum in Eq. 9 dominates and the phase estimator has an

approximately Gaussian distribution for q) near 0.
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The variance of the phase estimator is given by the following. Center D

by replacing D-0 in Eq. 9 with (D. Then,

2

2 
(12)

-1' ~12 F Q 2i 2-
= e 2 ° + 2 e 2,2 r 2 cos2j¢ d¢

12 7t , (2j-1
0

where the series expansion for the error function has been used to rewrite the

density function given by Eq. 9 in the equivalent form:

-Ii2? 2(12J 12
f(q)= - 2o2 [1 + 20 cos2) ( (13)

71 1 (2j- 1 )!!

By repeated substitution, the remaining integral can be evaluated as

2 2COS21 (D d (2j-1) - 1 -1_ -] (14)
Jo (2j)!! 2 L12 2 k= 2

The expression (2j-1)!!=1 .3.5...(2j-1) and (2j)!!=2.4.6...(2j). Note that (2j)!!=2J(j!).

Substituting this equation into Eq. 12 and making use of the series expansion

for the exponential gives for the variance

11,12 1

E{c-2}=- 2 e 2,JZ 2 (1
12 2 p=1 k=1 k

This is the exact expression for the variance of the phase estimator using the
asymptotic distribution of the cross-bispectrum. For 111 2=0 the variance is

12' as it should be for a uniform distribution. Since
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I 1 < T12

kZ1k 2 - 6

for all j, then

2(y2 1 e 1 (R12/6)
J=1 k= k2

which implies that E{4 21 > 0, as it should.

The variance of the phase estimator under the Gaussian approximation

can be determined by the following.

Let eR and el denote the random error in SR and Si, i.e.,

SR(m,n) = BR(m,n) + eR(m,n) , S(m,n) = Bi(m,n) + el(m,n) (1 6)

Expanding Eq. 8, we have

tan-(Si/SR) -tan-1 (BVBR) = (1 +B/B ) (BR-1er-B 2BIeR) + O() (17)

= (Br +BI2Y,(BRe-BjeR) + o(G)

where G2 =(2NA 2 N)I is the variance of eR and el. Thus the large sample

variance of (1(fm,fn) for mtn is

Var b(fm,fn ) = 12' 2(fmfn) (1 8)

When m=n, the large sample variance is 252F-2

1 ,2 (fmfn).

The important feature to note is that the statistics of the phase estimator

are determined by the cross-skewness function and the sample size, and, in

particular, the variance of the phase estimator is inversely proportional to the

square of the cross-skewness function.
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The distribution function of the phase estimator is given by

FO(Q) =f" f ((l) d*D

2

S,2 - 2 J

f1 e2 1 1+ cos2 0 dc
L =1 (2j-1)!

2 (19)

= 1 e 2 o + 2a 2 f cos2, d(D

L 2

_- 1 + O s (1 2_.. tI2j21 (2j-1)(2j-3) --(2j-2k+1) O 2j-2k -1

2 2=1 2j(2j-1 )''. k=1 2 k - )(-2..(-k)

IV. COMPARISON OF THE EXACT AND APPROXIMATE DISTRIBUTION OF
THE PHASE ESTIMATOR

A Q-0 plot of the exact distribution of the phase estimator given by Eq. 19

and its Gaussian approximation wth variance (F1 1 2/Y)- 2 is shown in Fig. 2 for

each of three different values of the ratio F1 1 2/0y. For 111 2/cF=1 , the exact

distribution has smaller tails than the Gaussian distribution, but as F1 1 2/Y

increases the tails become larger than the Gaussian distribution before

coi1verging to the normal distribution. A relatively small value of 1-11 2/a results

in good agreement between the exact and approximate distributions.

Figure 3 shows a plot of the percent difference between the exact and

approximate distributions as a function of 1l 12/0 for three values of the

distribution near the tail. Again, good agreement is achieved at relatively small
values of F111 2/(0.
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The percent difference between the exact variance given by Eq. 15 and

approximate variance given by (F1 12/;)-2 is shown in Fig. 4 as a function of the
ratio F1 1 2/G. For small values of the ratio, the percent difference is positive,

indicating that the exact distribution has smaller tails, as was shown in Fig. 2.

As the ratio gets larger, the tails become larger than the normal and the percent

difference becomes negative.

V. LINEAR RELATIONSHIP BETWEEN THE SERIES

Suppose that {x2(n)} is the output of a linear filter applied to {Xl (n)} with
impulse response {h(n)}, i.e., x2(n)=Emh(m)xl(n-m). We only assume that the

filter is stable. Then dA2(f)=H(f)dAl (f) where H(f) is the filter's transfer function.

Thus S2(f)=IH(f)12 S1 (f) and

B1 12(f,g)dfdg = E[dA(f)dA(g)dAl(-f-g)] (20)

= H(-f-g)B 111(f,g) dfdg

where B 11 is the bispectrum of {xl (n)}. Because of the linear relationship

between X1 and X2, the regions T1 and T2 in the cross-bispectrum (see Fig. 1)

contain the same information. In the T2 region, Eq. 20 becomes

B112(f,-g) = H(g-f))B1ii (f-g,g)

Thus it is only necessary to use the T1 region to estimate time delay. Applying
Eq. 20 and the above result for the spectrum of x2 to Eq. 10, r112=F111 where

F1i11 is the skewness function of xl. In other words, the cross-skewness is the

skewness of each process if the two are linearly related. Thus from Eq. 18, the
large sample variance of the phase is

Var 0(fm,fn) =  1 (fm,fn) . (21)

VI. TIME DELAY ESTIMATION

Suppose further that the linear relationship is given by
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"= ,(22!
0, Mn T

.e.. x i s jost a time delayed vesion of x2. Then,

B 12(ff,fn) = Bi:1 (fm ,f.,) e;>r(fm.)t (23)

Thus B112 is just a phase shifted version of B-ill

12 (fm,fn) 0 1 i1(,m,,rn) + 2T(frn+n)t (24)

The *; : it delay can thus be estimated as the scaled difference between the

phci.e estimates of the cross and auto bispectra:

,(25)f;";f , (f, 1 f n)
ILIm. n

In pvtitc,., t:,r tnie delay ,-nate can be improved by averaging over

frequency, ; hat have large bispectral value,:- cr -her equivalent averaging

methods (N<;s aid Pan, 196-i,

Since the bispectra phases are asymptotically Gaussian for large

skewness values, the time delay estimate is also asymptotically Gaussian.

Using the Taylor series expansion for the bispectrum phase, (Eq. 17) gives for

the phase differences

4)d(frn,fn)- 0d(fm,fn)=- -iiB 112(fmfn) e; 12 (fmfn)- B; 12(fm,fn) e1 12(fm,fn)
2iL Bi 12(fm,f)12 (26)

Bi11(fm,fn) e 1i(fm,fn) - Bii (fm,fn) elii(fmfn)]
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where

(I)d(frn,fn) = 01 ii 2 (fm,fn) - 0111 (fm,fn) (27)

and

Od(frn~fn) = Oji 2(frifn) -Ol 1 (fm,fn) (28)

The asymptotic variance Of (Id can now be calculated from Eq. 26 by making

use of the following relationships.

E{Jeif n)1 2} VAR,' Sll(f,I,)} I= 2&yS, frn)S1(fn)S1(fm~n) +0L (29)

E{iei 2 fm0n12}I VARjSIIi(fm,fn)}

(30)

-2ci
2S, (fm)Sl(fn)S 2(fm+n) +0W

Eje* 11(frn,fn) e1 12(fm,fri) =cov{Siif* f) S2(frn,fn)}1 11 (fmfn),S1 1(31)
= 2Oy2 Si(f m)Si1(fn)S12 (f m+n) + 0(L

Efe; 12(fm,fn) el11 (fni,fn)} = COtS; 12(fm,fn), SI 11(frn,fn)} (32)

= 2a32S,(fm)Sl(fn)S; 2(fm+n) + 0

where Si 2(f) is the cross-power spectrum.

The variance Of (Jd is then

VAR {Dd)(fni,fn) I + --_

1 12(fm,fn) FI 1(fm,fn) (3
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0

SBi 12(fm,fn) BIll(fmfn) G Y2f f
- 2 Re {B112(fm,fn)l IB,1,(fm,fn)j G112(fmOn)

where

IB11 2(fm,fn)l iBii,(fm,fn)(
G1 12(fm,fr) = (34)

S1 (m)S1 (n)S1 2(m+n)

This expression for the variance of the phase difference holds without making

the time-delay restriction implied by Eq. 22.

VII. EFFECTS OF NOISE

Now suppose that we observe the two processes with additive Gaussian
noise processes that are independent of the signals. Then the cross-
bispectrum of the signals plus noise is the SAME as that of the signals only.
This result holds if certain cross-bispectra of the signals and noise are zero, but
we will stick with the stronger independence assumption to simplify exposition.

If we denote the ratio of the signal and noise power spectra of the ith
channel by pi(f), then the variance of the phase difference for the signal plus
noise case is

VAR{(~+~mf) d 2_ [1 +Pl1(fm) [i +pll(fn)j [i +P'(fnm)]
I 112(fm,fn)

+ --1 l~~ 1+pi 1 (fm)j [1 +) 1 (f')j 1 +pl(fn+r)] (35)
1 1(f,,,fn)

-2 Re '[3-'2(t 1 ,f") B (fin f,,) 1) +p1'(fm)] 1 +P1'(f W(N0)(nm)n) P,(fm~n"I

B i 1 Bi"(fm,f" )I G 12(fmn) VVIS2)W fmn)
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W1 2 (S) and W12 (N) are the signal and noise (complex) coherency spectrum

defined as

W12(f) S12(f)

1 S 11(f)S22(f)

Equation 35 is the general expression for the variance of the phase difference

for signal and noise of arbitrary coherence.

If we now invoke the assumption of Eq. 22 that the signals are time

delayed versions of each other and the additional assumption that the noises
have approximately the same power spectral densities, then the variance of the
phase difference can be simplified to

VAR{Fd+N(fm,fn)} { I+p-1 (fm)j [ 1 +p-l(fn)] p;1(fm+n){ 1 -Rew N(fn+m)e-i.m-]} .

S111(fmfn)

(36)

This is the expression for the variance of the phase difference for correlated
noise. If the noise processes are time delayed versions of one another with
delay time Tn, then the term in the braces { } is just 1-cos(2 nfm+n(tn-t)), i.e., the

variance is dependent upon the difference in time delays between the signal

and noise. On the other hand, if the noise processes are independent of one
another, then the term in the braces { }is 1 and the variance of the phase

differences reduces in this case to

VAR {d+N(fm,fn)} = 22 [ l+p1(fm) [ 1 +p-(fn)] p1(fm+n) (37)
S111l(fm,fn)

Note that the asymptotic variance of the phase difference for the
bifrequency pair (fm, fn) decreases with the square of the skewness and with

(approximately) the cube of the signal-to-noise ratio. The term 02=(NAN2)1

determines the rate of convergence of the estimator to the true phase difference
as N-oo.
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VIII. COMPARISON TO THE CROSS-POWER SPECTRUM PHASE

The more common approach to estimating a time delay is by computing
the cross-power spectrum and its inverse Fourier transform, the cross-
correlation. The parallels to Eqs. 23 and 25 for the cross-power spectrum are

S 12 (f) = Sl(f)ei2 ft  (38)

and

T = 01 2 (f) (39)

where 012(f) is the estimate of the phase cf the cross-power spectrum. If the

cross-power spectrum is estimated in a manner similar to the bispectrum
estimate presented in Section II, and if the cross-power spectrum phase is
estimated as the arctangent of the ratio of the imaginary to the real parts of the
cross-power spectrum, then from the Taylor series expansion of the arctangent
(similar to Eq. 17) it can be shown that the variance of the cross-power spectrum

phase is

VAR 0 12(f) P 2 (40)
IW12(f)l2

where 12 = (2NAN) "1.

For the case of signal-plus-noise, the variance is given by

S+NVAR 0 12 (f)=
(41)

+Sw1 2 w2 + (wS2) w1 2  -1
(1+ l_1(f))(1+pi 1(f)) (1+p1(f))(1+p2(f)) "_ 1+pi'(f))(1 +p2

1(f))(1 +p1 (f))(1 +P2(f))}
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This is analogous to Eq. 35 for the cross-bispectrum.

If the signal is assumed to be perfectly coherent and the noises have

approximately the same power spectral densities, then in analogy to Eq. 36, the

variance of the cross-power spectrum phase simplifies to

VAR 12 M P, + -w + W(42)

1 +p; (f))2 (1 +P1 My (1 +pll(f))(1 +p(f))J

Finally, if the noises are incoherent, then the variance further reduces to

VAR 5~2N (f) = O2p. 2(1 +p 1(f))2 (43)

This is to be compared with Eq. 37 for the cross-bispectrum phase difference.

The question that now arises is in the case of uncorrelated noise, are

there conditions under which the cross-bispectrum time delay estimation

method will provide a more accurate estimation of the time delay than the cross-

power spectrum method. This essentially involves a comparison of Eqs. 37 and
43. Note that the variance of the cross-bispectrum phase difference is

approximately (for low signal-to-noise ratios) inversely proportional to the cube

of the signal-to-noise ratio, whereas for the cross-power spectrum phase the
variance is inversely proportional to the square of the signal-to-noise ratio. This

implies that for low signal-to-noise ratios the variance will increase more rapidly

for the cross-bispectrum phase difference than for the cross-power spectrum

phase. However, the variance of the cross-bispectrum phase difference is also

inversely proportional to the square of the skewness function of the signal,

implying that larger values of the skewness function can partially offset the more

pronounced effect that lower signal-to-noise ratios have on the cross-

bispectrum phase difference.

Sample size also contributes differently to the two variances. For the

cross-bispectrum phase difference, G2 =(2NA 2 N)- 1 , whereas for the cross-
power spectrum phase, 2.2 =(2N',N) 1 . If AN is chosen to be on the order of

N- 1 12 in both cases, then 52-0(1) while .y2 -O(N 1 /2 ). Thus the variance will
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reduce more rapidly as sample size increases for the cross-power spectrum
phase than for the cross-bispectrum phased difference.

Shown in Fig. 5 are plots of the variances of the cross-bispectrum phase
difference and cross-power spectrum phase as a function of signal-to-noise
ratio. For Eq. 37, the signal-to-noise ratios are taken to be the same at the three
frequencies, and -2 was set to 1. For both Eqs. 37 and 43, c2 was set to 1. For

this case, the comparison shown in Fig. 5a demonstrates that for low signal-to-
noise ratios the cross-bispectrum phase difference can have a much larger
variance than the cross-power spectrum phase due to its cubic dependency on
signal-to-noise ratio. However, at high signal-to-noise ratios its variance is
slightly smaller than the variance of the cross-power spectrum phase.

In interpreting these results, it should be kept in mind that the variance of
the cross-bispectrum phase difference is inversely proportional to F2 , so that
larger values of I-2 than presented in Fig. 5 will reduce its variance. On the

other hand, a 2 and p,2 were both set to 1 for the two cases, even though &P12

can be made to reduce more rapidly than o2 and still maintain consistency as
sampling size increases. Thus an appropriate choice of averaging can result in
a smaller cross-power spectrum phase variance than presented in Fig. 5.
Clearly, for low signal-to-noise ratios and uncorrelated noise, the cross-
bispectrum will not usually provide any performance advantage. The obvious
advantage of the cross-bispectrum is when correlated Gaussian noise is
present, which results in a bias for the cross-power spectrum.

VII. SUMMARY

In this paper we have derived the statistical properties of a consistent
time delay estimator for non-Gaussian signals in correlated noise. We have
shown the dependence of the performance of the time delay estimator on the
skewness of the signal, the correlation of the noise, the signal-to-noise ratio,
and the sample size. The asymptotic variance of the time delay estimator is
inversely proportional to the square of the skewness and approximately
inversely proportional to the cube of the signal-to-noise ratio.
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